Sous forme logarithmique équivalente ?

Toute équation qui est sous forme exponentielle a une forme logarithmique équivalente, et vice versa. Les deux équations ont un ‘b’, la base, un x et un y. Ces deux équations sont équivalentes, tout comme ces deux équations sont équivalentes : y = x + 9 et y – 9 = x. En utilisant l’algèbre, vous pouvez passer de l’un à l’autre.

Comment trouver les logarithmes équivalents ?

Sur le côté droit ci-dessus, “logb(y) = x” est l’instruction logarithmique équivalente, qui se prononce “log-base-b de y est égal à x” ; La valeur de l’indice “b” est “la base du logarithme”, tout comme b est la base dans l’expression exponentielle “bx”.

Comment convertissez-vous en forme logarithmique?

Pour passer de la forme exponentielle à la forme logarithmique, nous suivons les mêmes étapes en sens inverse. Nous identifions la base b, l’exposant x et la sortie y. On écrit alors x=logb(y) x = l o g b ( y ) .

Quelle est la forme exponentielle équivalente ?

La forme exponentielle est y = bx. La forme logarithmique est x = logby. ‘b’ signifie ‘base’ et ‘x’ est l’exposant. La définition d’un logarithme nous dit que ces deux formes sont équivalentes. Nous pouvons donc effectuer des allers-retours entre les deux formes.

Quel est un exemple de forme exponentielle ?

La notation exponentielle est une autre méthode d’expression des nombres. Les nombres exponentiels prennent la forme an, où a est multiplié par lui-même n fois. Un exemple simple est 8=23=2×2×2. Par exemple, 5 × 103 est la notation scientifique du nombre 5000, tandis que 3,25 × 102 est la notation scientifique du nombre 325.

Qu’est-ce que la forme exponentielle des logs ?

Ainsi, un log est un exposant ! y=logbx si et seulement si by=x pour tout x>0 et 00 et b≠1.

Comment résoudre des équations logarithmiques avec des bases différentes ?

Pour résoudre ce type de problème :

Étape 1 : Changez la base en 10. En utilisant la formule de changement de base, vous avez.
Étape 2 : Résoudre le numérateur et le dénominateur. Étant donné que votre calculatrice est équipée pour résoudre explicitement les logarithmes en base 10, vous pouvez rapidement trouver que log 50 = 1,699 et log 2 = 0,3010.
Étape 3 : Divisez pour obtenir la solution.

Qu’est-ce qu’un exemple de fonction logarithmique ?

Par exemple, 32 = 2 × 2 × 2 × 2 × 2 = 22. La fonction exponentielle 22 se lit comme « deux élevés par l’exposant de cinq » ou « deux élevés à la puissance cinq » ou « deux élevés à la puissance cinq ». ” Alors la fonction logarithmique est donnée par; f(x) = log b x = y, où b est la base, y est l’exposant et x est l’argument.

Comment savoir si un graphique est exponentiel ou logarithmique ?

L’inverse d’une fonction exponentielle est une fonction logarithmique. Rappelez-vous que l’inverse d’une fonction s’obtient en inversant les coordonnées x et y. Cela reflète le graphique autour de la ligne y=x. Comme vous pouvez le voir sur le graphique de droite, la courbe logarithmique est le reflet de la courbe exponentielle.

Quel point est sur chaque fonction logarithmique?

En effet, la plage de chaque fonction exponentielle est (0, inf) et les fonctions logarithmiques sont les inverses des fonctions exponentielles. Puisque les graphiques de toutes les fonctions exponentielles contiennent le point (0,1), les graphiques de toutes les fonctions logarithmiques contiennent le point (1,0), le reflet de (0,1) dans la ligne y = x.